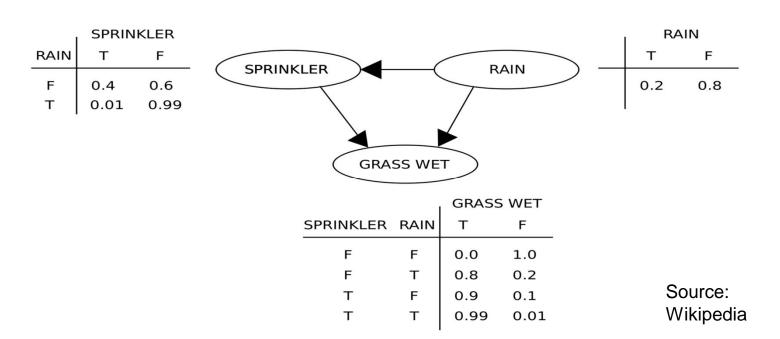

Introduction to Bayesian networks and decision support models

Laura Uusitalo

Bayesian network is

- a statistical model that represents
 - a set of variables (bubbles)
 - their conditional dependencies (edges)

 variables are random variables in the Bayesian sense



Picture source: Wikipedia

Bayesian network qualities

- Bayesian network is always
 - Directed: arrows, not just lines joining two nodes
 - Acyclic: the arrows may not form a directed loop
- Each variable includes a probability distribution
 - the probabilities of each of the possible outcomes (must cover all possible options!)
 - If a variable has incoming edges (parents), it has a conditional distribution: one probability distribution corresponding to each combination of the parents' values

(Conditional) probability distributions

- DSM also include decision and utility variables
 - Decision: something we can decide. Management options etc.
 - Strict measures / Business-as-usual / laizzes-faire...
 - Utility: benefit and/or harm resulting from the state of the system.
 - The fish yield
 - The value of yield
 - Value of ecosystem services
 - Etc.

Some side notes

- Bayesian network doesn't have to represent causal connections! It is a statistical, not mechanistic, model.
 - However, making the models mimic causal connections is often useful, especially in decision analysis.
- Theoretically, the values of the variables do not need to be a discrete set.
 - In practise, however, the modern BN algorithms are mostly unable to deal with anything else than discrete value sets, so we will mostly talk about discrete cases.